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The extra reflection conditions as given in Volume A of International Tables for

Crystallography may not be rigorously fulfilled if the thermal vibrations and

positional or static disorder of the atoms are not isotropic. Although small in

most cases, the intensities of reflections violating the extra reflection conditions

can become measurable for large thermal and positional anisotropy. It would be

useful to have an inventory of these ‘pseudo extra reflection conditions’ for all

space groups in the early stage of structure investigation. The subject is

demonstrated with the aid of four significant examples and the possibility of

predicting without calculation the status of the largest part of the extra reflection

conditions is discussed.

1. Introduction: the pseudo extra reflection conditions

Some time ago, Popa & Willis (2004) gave an explanation and

a generalization to any space group of an effect systematically

observed over a long period of time in the diffraction patterns

of the � phase of U4O9: the atoms sit in general positions but

the pattern obeys the reflection conditions of special sites. The

structure of this compound was further refined by Cooper &

Willis (2004) from single-crystal neutron data in accordance

with the Popa & Willis (2004) procedure. In the actual paper

the opposite effect is discussed: although all atoms sit in a

special position the diffraction pattern may not obey the extra

reflection conditions (ERCs) specific to this site.

The reflection conditions as given in Volume A of Inter-

national Tables for Crystallography (2006) were derived

presuming not only identical scattering amplitudes for the

equivalent atoms but also identical Debye–Waller factors

(DWFs). The last presumption is valid only if the thermal

vibrations and positional disorder are isotropic. If not, only

the lengths of the principal axes of the atomic displacement

ellipsoids are the same, not their orientations. Consequently,

DWFs for equivalent atoms are different and if these atoms

are in special positions the associated ERCs may not be

fulfilled.1

Although, to the best of my knowledge, this effect has not

been explicitly documented until now, it is probably accounted

for when anisotropic atomic displacement parameters are

refined in the structure-refinement programs. Nevertheless, in

the early stage of structure model searching, it would be useful

to know if a given ERC is rigorously fulfilled for any atomic

displacement distribution or if it is only a ‘pseudo extra

reflection condition’ (PERC). This statement is endorsed, for

example, by the following comment from the article by Hahn

& Looijenga-Vos (2006): ‘if the special position is occupied by

atoms whose scattering power is high in comparison with the

other atoms in the structure, reflections violating the extra

condition will be weak’. Obviously, there is a unique expla-

nation of such weak reflections if the extra condition is

rigorously fulfilled: those ‘other atoms’ from the cited frag-

ment. If the extra condition is not rigorously fulfilled, an

ambiguous situation occurs: all atoms sit in the corresponding

special position and have anisotropic atomic displacements (at

least part of them), or there are also atoms of low scattering

power sitting in other places.

2. Calculation of DWFs

To see if an ERC is rigorously fulfilled, the corresponding

structure factor should be calculated including anisotropic

DWFs. Accounting for the specifics of the problem, analytical

expressions for DWFs obtained by not too tedious algebra are

required.

For the general position the DWFs are described by six

atomic displacement parameters forming a symmetrical

second-rank tensor. For the special positions some constraints

are imposed on these tensors by site symmetry. There are two

traditional methods to deal with tensor derivation and

reduction: the ‘matrix method’ (see e.g. Authier, 2006) and the

‘direct-inspection method’ (Fumi, 1952a,b).

In the matrix method the DWF tensor of an equivalent

point in the general position is found from those of the first

equivalent point (representative) by applying the specific

transformation of the second-rank tensor at the rotation part

of the symmetry operations defining this equivalent point. The

tensor reduction is performed by solving a homogenous

system of linear equations resulting from the invariance of the

DWF tensor to the symmetry operations of the special site

(Kuhs, 2006; Levy, 1956; Peterse & Palm, 1966). The

constraints derived by this method can be found in Table

8.3.1.1 from Prince et al. (2006) for any space group. Although

1 Hereafter one presumes harmonic thermal vibrations and Gaussian
distribution for the static disorder.



appropriate for computer programming, the matrix method is

too lengthy for our purpose.

The direct-inspection method proposed by Fumi (1952a) is

a very simple one and is based on a fundamental property of

tensors: the tensor elements transform under a change of basis

like the product of vector components. To find the DWF

tensor of an equivalent point in the general position starting

from a representative it is enough to see how the coordinates

are changed under the symmetry operation (rotation part)

defining this equivalent point. The reduction is performed by

setting invariance conditions of the DWF tensor to the

symmetry operations of the special site.

The Fumi (1952a) direct-inspection method can only be

applied to crystal classes in which the coordinates do not

transform into linear combinations of themselves under the

symmetry operations, which excludes the trigonal and hexa-

gonal classes. Later Fumi (1952b) extended the direct-

inspection method to these classes with the price of losing the

simplicity.

In the present paper, a direct-inspection method was used

to calculate DWFs for a special site which is similar in terms of

simplicity to those of Fumi (1952a) but not identical. The key

of the method is the invariance of the DWFs to the symmetry

of the special site. The DWFs for the equivalent points in

general positions are directly calculated from the coordinates

of these points found in the Wyckoff table; the invariance is

imposed by direct inspection of the isomorphism between

these coordinates and those of the equivalent points in the

special site. In the actual variant the DWF tensor element

transformations as products of vector components and their

invariance to rotations appear to be consequences of the

calculations, not starting points in the DWF determination as

in the Fumi (1952a) variant. The algorithm of the actual

variant is described in the following.

Firstly, the DWFs for the general positions were calculated

as described by Popa & Willis (2004). These DWFs are

expð�WðiÞÞ, with WðiÞ ¼ 2�2hðHuðiÞÞ
2
i and where uðiÞ is the

atomic displacement vector of the equivalent point ðiÞ,

H ¼ ha� þ kb� þ lc� is the reciprocal-lattice vector and . . .h i
represents the thermal and static disorder averages. If the

displacement vector of the representative in a general position

in terms of the unit-cell vectors is uð1Þ ¼ uxaþ uybþ uzc, then

the displacement vectors of all the equivalent points are

obtained if ux; uy; uz replaces x; y; z in the list of coordinates

of general positions of the corresponding symmorphic group.

Replacing these displacement vectors in WðiÞ gives the quad-

ratic forms2 in the variables h; k; l for equivalent points in

general positions, all constructed with six coefficients �mn

defined as follows: �11 ¼ 2�2 u2
x

� �
, �22 ¼ 2�2 u2

y

� �
, �33 ¼ 2�2 u2

z

� �
,

�12 ¼ 2�2 uxuy

� �
, �13 ¼ 2�2 uxuz

� �
and �23 ¼ 2�2 uyuz

� �
. Now

considering a special position, the atomic displacement

quadratic forms of equivalent points can be denoted by W½i�
(label in square brackets) to distinguish them from those of

general positions. If the coordinates of the first equivalent

point of the special position are replaced into the set of

coordinates of general positions, coordinates of all the

equivalent points of the special position are obtained, each

being obtained r times, r being the ratio between the multi-

plicities of the general and special positions. If m is the ratio

between the multiplicity of the special position and the

centring multiplier (1, 2, 3 or 4), then there are ðr� 1Þm

equalities involving WðiÞ allowing the constraints of �mn and

then W½i� to be determined (redundantly in most cases).

3. Checking the ERCs for the special positions 4b and
8c in the group I �442d (No. 122)

According to International Tables for Crystallography Volume

A (2006), pp. 428–429, in the space group I42d the special

positions 4b of site symmetry �44:: and 8c of site symmetry 2::
both have the ERC hkl : l ¼ 2nþ 1 or 2hþ l ¼ 4n, but only

for the first site is the condition fulfilled if the atomic displa-

cement is anisotropic.

The DWFs are first calculated for equivalent points in the

general position 16e, following the procedure described in the

previous section. The DWFs are the same for the first and

second sets of coordinates. The coordinates in the first set are

ð1Þ x; y; z ð2Þ x; y; z ð3Þ y; x; z ð4Þ y; x; z ð5Þ xþ 1
2; y; zþ 3

4

ð6Þ xþ 1
2; y; zþ 3

4 ð7Þ yþ 1
2; x; zþ 3

4 ð8Þ yþ 1
2; x; zþ 3

4:

ð1Þ

The symmorphic group is I42m (No. 121), consequently the

atomic displacement quadratic forms of the equivalent points

in general positions are

Wð1Þ ¼ �11h2 þ �22k2 þ �33l2 þ 2�12hkþ 2�13hl þ 2�23kl

Wð2Þ ¼ �11h2
þ �22k2

þ �33l2
þ 2�12hk� 2�13hl � 2�23kl

Wð3Þ ¼ �22h2
þ �11k2

þ �33l2
� 2�12hk� 2�23hl þ 2�13kl

Wð4Þ ¼ �22h2 þ �11k2 þ �33l2 � 2�12hkþ 2�23hl � 2�13kl

Wð5Þ ¼ �11h2 þ �22k2 þ �33l2 � 2�12hkþ 2�13hl � 2�23kl

Wð6Þ ¼ �11h2
þ �22k2

þ �33l2
� 2�12hk� 2�13hl þ 2�23kl

Wð7Þ ¼ �22h2
þ �11k2

þ �33l2
þ 2�12hk� 2�23hl � 2�13kl

Wð8Þ ¼ �22h2
þ �11k2

þ �33l2
þ 2�12hkþ 2�23hl þ 2�13kl: ð2Þ

3.1. Special position 4b, site symmetry �44:

The coordinates of equivalent points are

½1� 0; 0; 0 ½2� 1
2 ; 0; 3

4 :

Replacing ½1� ð0; 0; 0Þ in the set of coordinates [equation (1)]

gives

ð1Þ ¼ ð2Þ ¼ ð3Þ ¼ ð4Þ ¼ ð0; 0; 0Þ ¼ ½1�;

ð5Þ ¼ ð6Þ ¼ ð7Þ ¼ ð8Þ ¼ 1
2; 0; 3

4

� �
¼ ½2�:

Consequently the following relations should be fulfilled by the

quadratic forms [equation (2)]
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equation, the correct left side is W6 not W10. The error occurred because the
list of coordinates (ten) was rearranged in a later version of the manuscript,
but the unlabelled equation was not updated.



Wð1Þ ¼ Wð2Þ ¼ Wð3Þ ¼ Wð4Þ ¼ W½1�;

Wð5Þ ¼ Wð6Þ ¼ Wð7Þ ¼ Wð8Þ ¼ W½2�:

From the first equalities set �22 ¼ �11 and �12 ¼ �13 ¼ �23 ¼ 0

are obtained, and the same from the second set. As expected

these constraints are identical to those from Table 8.3.1.1 of

Prince et al. (2006). With these constraints there is a unique

atomic displacement quadratic form for all equivalent points,

namely

W½1� ¼ W½2� ¼ W ¼ �11ðh
2
þ k2
Þ þ �33l2:

Consequently, in the expression of the structure factor for the

special position 4b the unique DWF can be factorized, and

then the ERC is rigorously fulfilled in this case, although the

atomic displacements are anisotropic.

3.2. Special position 8c, site symmetry 2..

The coordinates of equivalent points are

½1� 0; 0; z ½2� 0; 0; z ½3� 1
2; 0; zþ 3

4 ½4�
1
2; 0; zþ 3

4: ð3Þ

By replacing ½1� 0; 0; z in the set of coordinates [equation (1)]

then

ð1Þ ¼ ð2Þ ¼ ½1�; ð3Þ ¼ ð4Þ ¼ ½2�; ð5Þ ¼ ð6Þ ¼ ½3�; ð7Þ ¼ ð8Þ ¼ ½4�

and then

Wð1Þ ¼ Wð2Þ ¼ W½1�; Wð3Þ ¼ Wð4Þ ¼ W½2�;

Wð5Þ ¼ Wð6Þ ¼ W½3�; Wð7Þ ¼ Wð8Þ ¼ W½4�:

From the first equality �13 ¼ �23 ¼ 0 is obtained (as in Table

8.3.1.1). The remaining equalities between WðiÞ’s are redun-

dant and W½k�’s for equivalent points in 8c are

W½1� ¼ aþ c; W½2� ¼ b� c; W½3� ¼ a� c; W½4� ¼ bþ c;

ð4Þ

where a, b, c are defined as follows:

a ¼ �11h2 þ �22k2 þ �33l2;

b ¼ �22h2
þ �11k2

þ �33l2;

c ¼ 2�12hk: ð5Þ

Taking into account equations (3) and (4), the structure factor

for this site is given as

Fhkl ¼ ½1þ ð�1Þhþkþl
�

�

exp½�ðaþ cÞ� expð2�ilzÞ þ exp½�ðb� cÞ� expð2�il�zzÞ

þ exp½�ða� cÞ� exp 2�i½h=2þ ð�zzþ 3=4Þl�
� �

þ exp½�ðbþ cÞ� exp 2�i½h=2þ ðzþ 3=4Þl�
� �

8><
>:

9>=
>;:

ð6Þ

The first factor on the right of equation (6) is due to body

centring. Furthermore, Fhkl and then jFhklj
2 can be calculated

for those three cases of hkl defining the ERC: (i) l ¼ 2nþ 1,

(ii) l ¼ 2m, 2hþ l ¼ 4n for which the reflections are allowed,

and (iii) l ¼ 2m, 2hþ l 6¼ 4n for which the reflections are

forbidden.

(i) l ¼ 2nþ 1:

jFhklj
2
¼ 4½1þ ð�1Þhþkþl

� expð�2aÞ

�

coshð2cÞ 1þ exp½2ða� bÞ�½ �

þ2 expða� bÞ cosð4�lzÞ

þð�1Þhþðl�1Þ=2þ1 1� exp½2ða� bÞ�½ � sinð4�lzÞ

8><
>:

9>=
>;: ð7Þ

(ii) l ¼ 2m, 2hþ l ¼ 4n:

jFhklj
2
¼ 4½1þ ð�1Þhþkþl

� expð�2aÞ

� 1þ expða� bÞ½ �
2 coshð2cÞ þ cosð4�lzÞ½ �: ð8Þ

(iii) l ¼ 2m, 2hþ l 6¼ 4n:

jFhklj
2
¼ 4½1þ ð�1Þhþkþl

� expð�2aÞ

� 1� expða� bÞ½ �
2 coshð2cÞ � cosð4�lzÞ½ �: ð9Þ

From equation (5) a� b ¼ ð�11 � �22Þðh
2 � k2Þ, then from

equation (9) the ERC for the 8c site is rigorously fulfilled if

�22 ¼ �11, even if other anisotropy elements such as

�33 6¼ �22 ¼ �11 and/or �12 6¼ 0 exist. In contrast the ERC is

violated if the anisotropy A ¼ �11 � �22 is different from zero.

If jAj is large the peaks l ¼ 2m, 2hþ l 6¼ 4n become

measurable, as can be seen from the simulated data in Table 1.

The simulation was performed starting from values of

displacement parameters possible for real samples and

calculating jFhklj
2 using equations (7), (8) or (9) for the unique

set of reflections of I42d generated with some values of lattice

parameters. According to the ERC 8c the peaks in bold should

be forbidden, but they are not. Despite being of weak inten-

sity, these peaks are comparative with many allowed peaks

presumed to be measurable. The ERC for the 8c site is then in

fact a ‘PERC’.
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Table 1
Square modules of the structure factors for the special site 8c of the space
group I�442d calculated with �11 = 0.04, �22 = 0.005, �33 = 0.01, �12 = 0.014
for z = 0.1.

The unique set of reflections was generated with the unit-cell parameters a0 =
4.125, c0 = 5.125 Å arbitrarily chosen.

h k l jFhklj
2 h k l jFhklj

2

1 0 1 19.1362 4 1 1 14.6055
2 0 0 53.7197 2 2 4 21.6299
1 1 2 5.1984 4 0 2 2.0931
2 1 1 17.7942 3 2 3 1.1972
2 0 2 0.2191 4 2 0 28.5719
1 0 3 2.1850 3 1 4 0.2061
2 2 0 45.2137 3 3 2 4.2143
3 0 1 11.0302 2 1 5 15.5901
3 1 0 0.0057 4 2 2 1.0271
0 0 4 30.4173 4 1 3 4.2518
2 1 3 2.8242 3 0 5 13.2691
3 1 2 3.9399 1 1 6 18.6568
3 2 1 10.6152 4 3 1 9.2464
2 0 4 25.5314 5 0 1 3.9428
3 0 3 0.4704 5 1 0 0.0733
4 0 0 33.6590 4 0 4 15.9971
1 0 5 18.5606 2 0 6 0.0441



4. Conserved, removed or modified ERCs

When isotropic DWFs are replaced by anisotropic ones the

ERCs (if they exist) can not only be conserved or removed, as

was shown in the previous section, but they can also be

modified, as can be seen in the following two examples.

4.1. Group P�443n (No. 218), special position 6c

According to International Tables for Crystallography

Volume A (2006), p. 665, for this special position the site

symmetry is 4:: and the ERC is

hkl : hþ kþ l ¼ 2n or h ¼ 2nþ 1; k ¼ 4n; l ¼ 4nþ 2:

ð10Þ

Using the procedure described previously gives �22 ¼ �33 and

�12 ¼ �13 ¼ �23 ¼ 0; then the corresponding structure factor

is

Fhkl ¼ expð�aÞ expði�h=2Þð�1Þk½1þ ð�1Þh�

þ expð�bÞ expði�k=2Þð�1Þl½1þ ð�1Þk�

þ expð�cÞ expði�l=2Þð�1Þh½1þ ð�1Þl�; ð11Þ

where a ¼ �11h2 þ �22ðk
2 þ l2Þ, b ¼ �11k2 þ �22ðh

2 þ l2Þ and

c ¼ �11l2 þ �22ðh
2 þ k2Þ.

It is readily seen from equation (11) that the reflections

h; k; l ¼ 2nþ 1 are not allowed and also that Fhkl 6¼ 0 for

hþ kþ l ¼ 2n. Still left to check is the combination of one

odd index and two even indices:3 h ¼ 2nþ 1, k ¼ 2m, l ¼ 2j.

Replacing equation (11) gives

jFhklj ¼ 2 expð�bÞj1� ð�1ÞðkþlÞ=2 exp Aj

¼ 2 expð�bÞ
j1� exp Aj for kþ l ¼ 4n

j1þ exp Aj for kþ l ¼ 4nþ 2;

�
ð12Þ

where A ¼ b� c ¼ ð�11 � �22Þðk
2 � l2Þ. For the isotropic case

�11 ¼ �22, then A ¼ 0 and equation (12) is in agreement with

the second part of ERC [equation (10)]. With anisotropic

displacement parameters the first part of equation (10) is

conserved, the second is removed, and then the ERC is

modified, becoming hþ kþ l ¼ 2n.

4.2. Group Pn�33n (No. 222), special position 8c

According to International Tables for Crystallography

Volume A (2006), p. 677, the site symmetry and the ERC are

:3: and h; k; l : h; k; l ¼ 2n. The constraints of the displace-

ment parameters are �11 ¼ �22 ¼ �33 and �12 ¼ �13 ¼ �23,

then the structure factor is

jFhklj ¼ ½1þ ð�1Þhþkþl
� expð�a� bÞ

� j1þ ð�1Þl expðb� cÞ þ ð�1Þk expðb� dÞ

þ ð�1Þh expðb� eÞj; ð13Þ

where a ¼ �11ðh
2 þ k2 þ l2Þ, b ¼ 2�12ðhkþ hl þ klÞ, c =

2�12ðhk� hl � klÞ, d = 2�12ð�hkþ hl � klÞ and e =

2�12ð�hk� hl þ klÞ. It can be seen from equation (13) that if

�12 6¼ 0 then jFhklj 6¼ 0 not only for h; k; l ¼ 2n but also for

h ¼ 2nþ 1; k ¼ 2nþ 1 and l ¼ 2n.4 In other words the ERC

h; k; l ¼ 2n is extended to hþ kþ l ¼ 2n.

5. Numerical checking and prediction of PERCs

The analytical calculations developed above proved that using

anisotropic DWFs may result in full or partial violation of the

ERCs. Using such calculations to realize a necessary inventory

of PERCs is a tedious and uneconomical enterprise. It is much

more convenient to carry out numerical simulations similar to

those presented above, resulting in Table 1. For this purpose

any existing computer software providing a unique set of

reflections together with the corresponding structure factors

can be used.

Besides the numerical checking a large number of PERCs

can be predicted without calculation using Table 8.3.1.1 from

Prince et al. (2006). In this table the independent elements of

the DWF tensors of the equivalent positions of a given special

site are found. These tensors are obtained from those of the

representative position of the special site by applying the

operations of the crystal point group not belonging to the site

point group. The corresponding atomic displacement ellip-

soids (ADEs) are identical in shape, whereas they may or may

not be identical in orientation. An easy prediction of the ERC

status for non-cubic groups is based only on this last condition:

identical orientations mean identical DWFs, then the ERC is

conserved as in International Tables for Crystallography.

For site symmetry 1 in any space group5 the DWF tensors

have six independent elements and then the ADEs have

different orientations, consequently the ERCs are removed,

being in fact PERCs. The same is valid for the special sites of

point groups 2, m, 2/m in any space group. In these cases the

DWF tensors have four independent parameters and the

twofold axis is a common principal axis for the ADEs but

these ellipsoids have different orientations in the plane normal

to this axis. On the contrary, for the special sites of point

groups 4, 4, 4=m, 4mm, 42m, 422, 4=mmm in the tetragonal

space groups ADEs are rotation ellipsoids around the fourfold

axis. These ellipsoids have identical orientations and conse-

quently the ERCs are conserved. The same arguments and

conclusions (ERCs conserved) are valid for the special sites 3,

3, 3m, 32, 3m and 6, 6, 6=m, 622, 62m, 6mm, 6=mmm in the

trigonal (hexagonal axes) and hexagonal space groups where

the threefold and sixfold axis, respectively, are ADEs rotation

axes. For the special sites of point groups 222, mm2, mmm,

there are three independent parameters determining the

principal axes of ADEs along the three twofold axes. In the

orthorhombic space groups there are no symmetry operations

giving different ADE orientations, and then in these groups

the ERCs are conserved. Such operations exist in tetragonal,

trigonal and hexagonal space groups where the ERCs of these

special sites are removed.
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4 Note that the group is primitive so the first factor on the right side of
equation (13) is not due to centring.
5 There are no special sites of this symmetry obeying ERCs in the triclinic and
cubic groups.



For the cubic groups the prediction of ERC status from

simple considerations, without any calculations, is a very

difficult, rather impossible task.6 There are two arguments to

support this statement.

(i) Although the independent elements of the DWF tensors

of equivalent positions are determined only by the oriented

site symmetry, the status of an ERC can be different for

different cubic space groups, which is not the case inside a

given non-cubic crystal system. For example, the ERC for 6d

of symmetry 222:: from Pn3 is conserved, but it is removed for

6d of symmetry 222:: from P4232.

(ii) It is frequently possible to conserve the ERCs, totally or

partially, even if the ADEs do not have identical orientations.

For example, the ERC is conserved in 6d of symmetry 222::
from Pn3, although the three pairs of identical ellipsoids are

oriented along the cube axes.

In 8c of symmetry :3: from Pn3n where, according to x4.2,

the ERC is only partially violated, there are eight rotation

ellipsoids around the four threefold axes. Note that a partial

violation of the ERC may only occur in cubic space groups.

Consequently, the status of ERCs in cubic groups should be

checked by numerical simulation.

6. Conclusions

The ERCs as given by the International Tables for Crystal-

lography were derived presuming isotropic DWFs. If aniso-

tropic DWFs are considered, one of the following three

situations occurs:

(i) the ERC is conserved as it was derived for the isotropic

case;

(ii) the ERC is modified, acting on an enlarged group of

Miller indices;

(iii) the ERC may be completely removed, becoming a

PERC.

The supplementary diffraction peaks not predicted by the

‘original’ ERCs or, at least, by part of them may become

measurable if the anisotropy of DWFs is not small. For the

early stage of the structure investigation it is useful to have an

inventory of the real status of the extra reflection conditions

for all space groups. This could be of a fundamental impor-

tance when searching for a structural model, helping to avoid

possible confusions resulting in the wrong initial choice of

model. The largest part of this inventory is already available

from the symmetry considerations given in the previous

section. The rest can be easily obtained by numerical simu-

lations using the existing structure-refinement programs.
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6 Except for the special sites of monoclinic symmetries 2;m; 2=m already
discussed.
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